Constraints on Gravity and Dark Matter from Clusters of Galaxies

Douglas Clowe Ohio University

Figure stolen from Stacy McGaugh

It does that very well!

MOND fails with clusters of galaxies

- Sanders (2003) found that galaxies + X-ray plasma was not sufficient with MOND to explain the X-ray temperature
- Suggested a massive (~2 eV) neutrino to make up the missing mass
- This would not harm MOND's fits to spiral galaxies, as the 2 eV neutrino's density profile has a large core in a typical spiral galaxy potential

The Bullet Cluster (v 1.0)

Weak lensing gravity centroids offset from the plasma centroids by 2-3

X-ray refinements

- Pointecouteau and Silk (2005) looked at 10 clusters to large radial range (>0.5 R₂₀₀) with XMM
- Modeling with MOND required 4 times the amount of mass in a dark component compared with the X-ray plasma
- Still (barely) viable with a 2 eV neutrino

The Bullet Cluster (v 1.1)

Conclusion: in any modified gravity, you will need at least twice as much DM as visible baryons

green = convergence white = centroid errors

Clowe et al (2006)

TeVeS Model

Angus et al 2006, ApJ, 654, L13

See also Feix, Fedeli, and Bartelmann 2007

red = X-ray plasma

blue = weak lensing convergence

The total system is best fit with $r_{200} = 2140$ kpc, c = 1.9 at 11σ for the main cluster, $r_{200} = 1000$ kpc, c = 7.1 at 7σ for the merging subcluster.

- The total system is best fit with $r_{200} = 2140$ kpc, c = 1.9 at 11σ for the main cluster, $r_{200} = 1000$ kpc, c = 7.1 at 7σ for the merging subcluster.
- Infall velocity for the system is ~3000 km/s, X-ray shock velocity measured at ~4700 km/s

- The total system is best fit with $r_{200} = 2140$ kpc, c = 1.9 at 11σ for the main cluster, $r_{200} = 1000$ kpc, c = 7.1 at 7σ for the merging subcluster.
- Infall velocity for the system is ~3000 km/s, X-ray shock velocity measured at ~4700 km/s
- System is likely seen with major axis in plane of sky -> WL underpredicts mass by ~30%

- The total system is best fit with $r_{200} = 2140$ kpc, c = 1.9 at 11σ for the main cluster, $r_{200} = 1000$ kpc, c = 7.1 at 7σ for the merging subcluster.
- Infall velocity for the system is ~3000 km/s, X-ray shock velocity measured at ~4700 km/s
- System is likely seen with major axis in plane of sky -> WL underpredicts mass by ~30%
- Shock velocity not affected by gravity (Milos² et al), X-ray gas moving toward bullet (Springel & Farrar) -> true velocity 3000-3500 km/s

MOND vs DM

MOND VS DM

MOND vs DM

MOND + WDM
vs
CDM

CL0024 DM "Ring"

Jee et al (2007)

CL0024 DM "Ring"

CL0024 DM "Ring"

A Dark Core?

Mahdavi et al (2007)

Okabe and Umetsu (2007)

Clowe et al (eventually)

MOND vs DM in groups

Angus, Famaey, & Buote (2008)

MOND vs DM in groups

Angus, Famaey, & Buote (2008)

MOND on the outskirts of galaxies

- Hoekstra, Gladders, & Yee (2004) found that the galaxy-galaxy lensing signal around massive galaxies is not circular at large radius (as predicted by MOND without DM)
- Result confirmed Parker et al (2007) with CFHTLS galaxy-galaxy lensing
- Tian, Hoekstra, and Zhao (2008) find that the galaxy-galaxy lensing signal increases with galaxy luminosity faster than MOND would predict (and faster than MOND + neutrinos)

Mili-lensing

Substructure in the lensing galaxy can produce microlensing type effects 1 of the multiple images.

Measurement of these effects can constrain amount of substructure in galaxies and the sizes of the black holes and accretions disks in the quasar lenses.

Mili-lensing

Substructure in the lensing galaxy can produce microlensing type effects 1 of the multiple images.

Measurement of these effects can constrain amount of substructure in galaxies and the sizes of the black holes and accretions disks in the quasar lenses.

Conclusions

- MOND (and all alternative gravity models) require twice as much DM as visible baryonic matter, including a large non-neutrino component
- Ring and DM bump are too low of significance detections to base any conclusions about gravity or DM models off of
- MOND may need LWDM to account for lensing and X-ray data on the outskirts of massive galaxies -> possible conflict with inner rotation curves of galaxies